

Five New Steroids from Solanum nudum

Jairo Saez¹, Wilson Cardona¹, Diego Espinal¹, Silvia Blair², Jacqueline Mesa², Mamadou Bocar³ and Akino Jossang^{3*}

Received 14 April 1998; accepted 26 June 1998

Abstract: Five new steroids, the cholest-4-ene-3,22-diones: tumacone A (1), tumacone B (2), tumacoside A (3), tumacoside B (4), and a furostenone: tumaquenone (5), besides diosgenone (6), were isolated from the aerial parts of Solanum nudum. Their structures were determined by 2D NMR, MS analyses and chemical correlations. Steroid 3 and 5 displayed in vitro antimalarial activity against a Plasmodium falciparum chloroquine-resistant FCB-1 strain (IC₅₀ 27 and 16 μM). The observed stereodependent cyclization into spiroketals of two 16-O isomers is discussed. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Solanum nudum; cholest-4-en-3,22-dione; steroids; tumacones A and B; tumacosides A and B; tumaquenone; antimalarial; stereodependent cyclization.

Solanum nudum (Solanaceae) is a plant growing in South America and used in the Colombian Pacific area for treatment of fevers associated with malaria. The fruits of this plant were previously shown to contain a steroidal alkaloid, solanudine. In vitro screening of the ethanol extract of S. nudum showed promising antimalarial potency. By bioassay-guided fractionation of MeOH extracts of the aerial parts, we isolated five new steroids and elucidated the structure of four cholest-4-ene-3,22-diones: tumacone A (1), tumacone B (2), tumacoside A (3) and tumacoside B (4), as well as a furostenone, tumaquenone (5) and known diosgenone (6).

Interestingly enough, we noticed, in *S. nudum*, the presence of two 16-C located stereoisomeric groups: 16α -oxygenated 22-ketosteroids 1, 2, 3 and 4 on one hand, 16β -oxygenated furostane 5 (hemiketal) and spirostane 6 (spiroketal), on another. These products allowed rationalization of a stereodependent cyclization of the 16β -oxygenated 22-ketosteroids.

jossang@mnhn.fr.

¹Department of Chemistry, Faculty of Sciences, University of Antioquia, AA1226 Medellin, Colombia.

²Department of Parasitology, Faculty of Medicine, University of Antioquia, AA1226 Medellin, Colombia.

³Laboratoire de Chimie, URA 401 CNRS, Muséum National d'Histoire Naturelle, 63 rue Buffon, 75005 Paris, France.

Tumaquenone 5

Tumacone A 1: R=Ac, R₁=H Diacetyltumacone 1a=2a: R=R₁=Ac

Tumacone B $2: R=R_1=H$

Tumacoside A $3: R=Ac, R_1=$

Tumacoside B $4: R=H, R_1=$

Diosgenone 6

Tumacone A (1), $[\alpha]_D$ -34.2°, had the molecular formula $C_{29}H_{44}O_5$ as deduced from its HRFABMS: m/z 495.3109 [M+Na]⁺, supported by the ¹³C NMR spectrum (Table 1). The IR spectrum of 1 showed absorption bands characteristic of ketone (1736, 1677 cm⁻¹) and hydroxyl (3434 cm⁻¹) groups. The ¹³C NMR spectra of 1 displayed 29 carbon signals mainly in the sp³ C field. The DEPT and ¹H-¹³C HETCOR spectra revealed the presence of five methyls (one being acetoxyl), nine methylenes, one oxymethylene, eight methines (one olefinic) and six quaternary carbons (four sp² C). The ¹H NMR (Table. 2) of 1 corroborated the presence of five methyl groups: three singlets at δ 0.73, 1.15 and 1.92 and two doublets at δ 0.82 and 1.05. Hence, the presence of a cholestane skeleton was suggested and confirmed by ¹H and ¹³C 2D NMR analyses. HMBC longrange correlations (Fig. 1) of C-3 and C-4 clearly indicated the existence of an α,β-unsaturated carbonyl system (δ_{CO} 199.5, δ_{C} 170.8, δ_{C} 123.9 and δ_{H} 5.69) on a choles-4-en-3-one skeleton as well as an acetyl group $(\delta_{CO}171.0, \delta_{C}21.2)$ and $\delta_{H}1.92$ attached to 16-O, giving a cross peak with H-16. HMBC experiments allowed also to assign the resonance at δ 213.7 to a 22-ketone group by connection with H-20 and CH₃-21. The 26hydroxyl was deduced from the observation of a 3-(hydroxymethyl)butyl spin system of C-23 to C-27, in the COSY spectrum. The EIMS of steroid 1 (Fig. 2) showed two diagnostic fragments at m/z 115 and 358 produced by cleavage between C-20 and C-22, in agreement with the 22-carbonyl assignment. 16-O-Acetyl steroidal fragments at m/z 358 and 329 gave further two peaks at m/z 298 and 269 by loss of acetic acid. On the NOESY spectrum of acetylated 1a (Fig. 3), cross-peaks between H-20 and both H-16 and CH₃-18 as well as between CH₃-18 and CH₃-19, H-8 and H-16, indicated their β-orientation. Hence, compound 1, named tumacone A, was 16α -acetoxy-26-hydroxycholest-4-ene-3,22-dione.

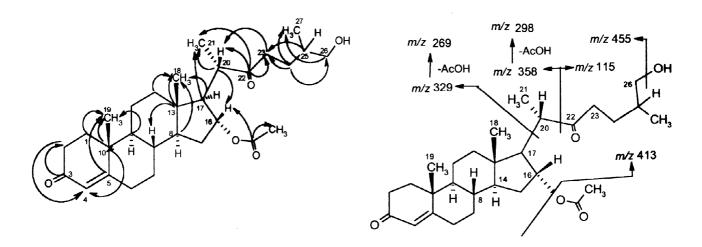


Fig. 1. HMBC correlations of tumacone A 1.

Tumacone B (2), $[\alpha]_D + 10.6^\circ$, was isolated as a pale yellow viscous mass which analyzed for $C_{27}H_{42}O_4$ by HRFABMS (m/z 453.2950 [M+Na]⁺) and ¹³C NMR spectrum. The ¹H and ¹³C NMR spectra of 2 exhibited signals quite similar to those of 1, but lacking the acetyl group. The signal of C-16 at δ 78.5 of 1 was shifted to δ 76.0 and H-16 at δ 4.85 to δ 3.65; these differences arose from deacetylation of compound 1 into 16-hydroxy steroid.

Acetylation of 2 gave the diacetyl derivative 2a, $[\alpha]_D$ -34.7°, identical to the acetyl derivative 1a. Compound 2 thus possessed the same configuration as 1.

Fig. 2. EIMS fragmentations of 1.

Fig. 3. Selected NOEs of 1a.

Hence, the structure assigned to turnacone B (2) was $16\alpha,26$ -dihydroxycholest-4-ene-3,22-dione.

Tumacoside A (3), $[\alpha]_D$ -25.3°, possessed the molecular formula $C_{35}H_{54}O_{10}$ obtained from HRFABMS: m/z 657.3652, $[MNa]^+$. The ¹H and ¹³C NMR spectra displayed the resonances of a sugar in the oxymethine field, in addition to those of tumacone A (1). The chemical shift of the anomeric carbon at δ 103.1 and the coupling constant (8 Hz) of the anomeric proton (δ 4.19) suggested the hexose was glucose. The HMBC correlation between H-1' and C-26 allowed to attach the sugar to 26-O. The H-16 in the triplet at δ 4.83 was geminal to an acetoxyl group, confirmed by HMBC connection. In the NOESY spectrum, H-16 showed crosspeaks with H-20 and methyl-18, configurated β . Action of β -D-glucosidase on tumacoside A (3) furnished D-glucose and tumacone A (1). From these results, the structure of tumacoside A (3) was established as 16α -acetoxy-26-O- β -D-glucopyranosyloxycholest-4-ene-3,22-dione.

The molecular formula of turnacoside B (4) was $C_{33}H_{52}O_9$ deduced from HRFABMS, m/z 615.3467, [MNa]⁺, one acetyl group C_2H_2O less than turnacoside A (3). The H-16 was shielded to δ 3.83 from δ 4.83 of compound 3, indicating deacetylation at 16-OH. Two protons at 26 were distinguished by the presence of a glucosyl group and the C-26 was correlated with the anomeric proton in the HMBC spectrum. Turnacoside B (4) furnished D-glucose and turnacone B (2) by action of β -D-glucosidase. Hence, turnacoside B (4) was 26-O- β -D-glucopyranosyloxy-16 α -acetoxycholest-4-ene-3,22-dione.

Table 1. ¹³C-NMR Data for Compounds 1 - 6 (CDCl₃, 75 MHz).

C n°	1	2	1 a=2a	3	4	5	6
1	35.5	35.2	35.5	35.4	35.5	35.4	35.5
2	33.8	33.5	33.8	34.0	33.7	33.5	33.8
3	199.5	1 99.4	199.3	200.1	200.0	200.6	199.3
4	123.9	123.4	123.9	123.7	123.6	123.3	123.7
5	170.8	171.2	170.6	171.3	171.9	172.6	171.0
6	32.6	32.4	32.5	32.7	32.7	32.6	32.6
7	31.7	31.5	31.6	31.6	31.7	31.8	32.0
8	34.9	34.5	34.8	34.8	34.8	34.9	35.0
9	53.4	53.1	53.4	53.3	53.3	53.5	53.6
10	38.5	38.2	38.4	38.5	38.4	38.5	38.5
11	20.6	20.3	20.5	20.5	20.5	20.5	20.7
12	39.2	39.2	39.2	39.2	39.4	39.2	39.5
13	43.5	43.6	43.4	43.6	43.8	40.4	40.2
14	52.7	52.1	52.7	52.6	52.4	55.2	55.5
15	34.1	35.1	33.9	33.7	35.3	31.3	31.6
16	78.5	76.0	78.5	78.6	75.7	80.7	80.4
17	57.7	62.1	57.7	57.7	62.2	62.2	61.9
18-Me	13.2	13.3	13.1	13.1	13.4	16.0	16.2
19-Me	17.3	17.0	17.2	17.2	17.1	17.0	17.2
20	47.6	48.3	47.8	47.6	48.8	39.7	41.5
21-Me	16.4	16.5	16.2	17.2	16.4	15.0	14.4
22	213.7	216.9	212.7	214.3	217.4	110.4	109.1
23	39.2	38.4	38.9	39.2	38.1	35.2	31.2
24	25.9	26.6	26.6	26.6	27.0	26.8	28.6
25	35.1	34.7	32.0	32.5	32.7	32.3	30.1
26	67.2	66.9	68.8	74.8	75.1	75.0	66.7
27-Me	16.5	16.3	16.6	16.3	16.5	16.5	17.0
16-OAc	171.0	-	170.5	171.5	-	-	-
	21.2	-	21.1	21.1	-	-	-
26-OAc	-	-	171.1	-	-	-	-
	-	-	20.8	-	-	-	-
26-OGlu							
1'	-	-	-	103.1	103.1	103.0	_
2'	-	-	-	73.6	73.5	73.4	-
3'	-	-	-	76.2	76.0	75.6	-
4'	-	-	-	69.9	69.6	69.8	-
5'	-	-	-	76.2	76.2	76.1	-
6'	_	-	-	61.7	61.2	61.4	

Table 2. ¹H-NMR Data for Compounds 1 - 6 (CDCl₃, 300 MHz).

C n°	1	2	1 a=2a	3	4	5	6
1	1.65	1.50	1.64	1.62	1.64	1.58	1.60
	1.95	1.88	1.76	1.93	1.76	1.58	1.95
2	2.32	2.22	2.32	2.28	2.27	2.23	2.28
4	5.69 s	5.52 s	5.65 s	5.60 s	5.65 s	5.60 s	5.65 s
6	2.23	2.13	2.21	2.19	2.17	2.16	2.19
	2.36	2.30	2.36	2.25	2.23	2.32	2.35
7	1.02	0.96	0.99	1.00	1.01	0.92	0.95
•	1.70	1.69	1.70	1.70	1.76	1.73	1.78
8	1.50	1.42	1.48	1.48	1.48	1.62	1.65
9	0.95	0.88	0.94	0.93	0.93	0.80	0.85
11	1.35	1.24	1.33	1.29	1.31	1.41	1.33
11	1.55	1.43	1.53	1.42	1.65	1.41	1.47
12	1.34	1.43	1.37	1.42	1.30	1.04	1.12
12	1.97	1.78	1.93	1.89	1.89	1.66	1.67
1.4							
14	1.32	1.33	1.30	1.27	1.36	1.01	1.05
15	1.45	1.45	1.45	1.40	1.32	1.18	1.25
	1.69	1.80	1.72	1.72	1.85	1.86	1.95
16	4.85 t, 8	3.65dd,7;14	4.83 t, 8	4.83 t, 8	3.83		4.32dd,7;14
17	1.84	1.48	1.59	1.80	1.48	1.67	1.70
18-Me		0.62 s	0.74 s	0.70 s	0.68 s	0.70 s	0.76 s
		1.05 s	1.12 s	1.10 s	1.10 s	1.06 s	1.12 s
20	2.65	2.58	2.60	2.62	2.62	1.92	1.80
21-Me	1.05 d, 7	1.02 d, 7	1.05 d, 7	1. 02 d, 7	1.08 d , 7	0.87 d, 7	0.88 d, 7
23	2.45 t, 7.8	2.39	2.40	2.40	2.48 t, 7.8	1.62	1.53
	2.45 t, 7.8	2.53	2.45	2.45	2.48 t, 7.8	1.90	1.55
24	1.32	1.32	1.25	1.23	1.36	1.20	1.35
	1.51	1.55	1.57	1.59	1.66	1.53	1.55
25	1.53	1.46	1.68	1.65	1.60	1.64	1.56
26	3.40 d, 7	3.20 d, 7	3.80	3.28	3.30	3.22	3.28
	3.40 d, 7	3.20 d, 7	3.83	3.60	3.68	3.64	3.39
27-Me	0.82 d, 7	0.77 d, 7	0.86 d, 7	0.82 d, 7	0.80 d, 7	0.77 d, 7	0.72 d, 7
16-OA	: 1.92 S	-	1.89 s	_	1.90 s	_	_
26-OA		_	1.98 s	-	-	-	-
26 001	h.,						
26-OGI	ıu			4.19 d, 8	4.20 d, 8	4.12 d, 8	
2'				3.20	3.20	3.18	
3'				3.38	3.34	3.32	
4'				3.39	3.35	3.32	
5'				3.20	3.20	3.19	
6'				3.68	3.69	3.66	
5				3.77	3.80	3.70	

Tumaquenone 5, analyzed for $C_{33}H_{52}O_9$ by HRFABMS, was an isomer of steroid 4. The ¹³C NMR spectra showed a dioxygenated C (δ 110.4) lacking 22-C=O resonance. The NOESY spectrum presented crosspeaks between H-16 and H-17 α , indicating a 16 β -O-configuration. β -D-glucosidase produced cyclization of tumaquenone 5 into diosgenone 6, a spiroketal. Thus compound 5 was 26-O- β -D-glucopyranosyloxy-25(R)-furost-4-en-3-one.

The NOESY spectrum of diosgenone 6, 25(R)-spirost-4-en-3-one, displayed correlations between H-16 and H-17 α and H-14 α on the α side and between CH₃-18 and CH₃-19, H-8 and H-20 (CH₃-21) on the β side. The chemical shifts of CH-25 ($\delta_{\rm H}$ 1.56, $\delta_{\rm C}$ 30.1) and CH₃-27 ($\delta_{\rm H}$ 0.72, $\delta_{\rm C}$ 17.0) indicated 25R configuration (25S: $\delta_{\rm C25}$ 26 and $\delta_{\rm C27}$ 16).³

These steroids may be classified into two stereochemically distinct groups: $16H\alpha$ and $16H\beta$. S. nudum thus produced mainly 16β - as well as small amount of 16α -oxygenated steroids. Only 16β -OH with simultaneous presence of 22-C=O, never found in nature until now, induced spontaneous cyclization into hemiketal, the corresponding furostane and further, into spiroketal in presence of 26-OH.⁴ The furostenone, tumaquenone 5, was thus transformed into a spiroketal, diosgenone 6, a major product in S. nudum

Fig. 4. Reaction of 16α -acetoxycholest-4-ene-3,22-diones.

 16β -O-, 26-O- diacetylcholestan-22-one, produced by opening of the spirostane by action of BF3-Ac₂O, was described to cyclize into starting spiroketal by saponification with KOH/MeOH,⁵ whereas 16α -O-,26-O-diacetate 1a returned to the starting tumacone 2: 16α ,26-diol, on saponification (Fig. 4). Both 22-ketone and free non-cyclizable 16α -OH groups are thus found in the steroids of *S. nudum* and other natural sources: Solanum abutiloides ⁶, and Fevillea cordifolia ⁷.

In order to understand the stereo-dependent cyclization into spiroketal, the conformation of acetyltumacone A (1a), diosgenone (6) and the 16β -O-isomer of 1a, presenting closest 16-O / 22-C were obtained by molecular dynamic simulation and energy minimization calculations (Hyperchem program package)⁸. The dihedral angle O16-C16-C17-C20 on the computed structure was 36.9° for equatorial 16β -O steroid; 15.6° for the spirostane 6, while the dihedral angle for 16α -O steroid 1a was -84.9° , too strained to allow 16α -O / C-22 linkage to be established.

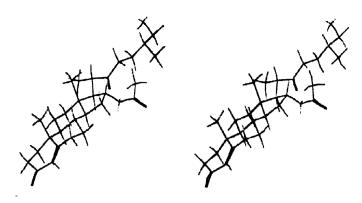


Fig. 5. Stereoview of the most stable energy minimized structure of tumacone A (1).

Noteworthy was the chemical shift of the 22- ketone influenced by the 16α -O acetyl group: the signal near δ 217 in 16α -hydroxy compounds 2, 4 and 16β -glycosyl steroids 4 was shielded to about δ 214 in 16α -acetoxyl steroids 1 and 3. The MM2 energy minimized structure of 1 (Fig. 5) showed that C-22 was found in a positive anisotropic area of the 16α -acetoxy carbonyl group.

In addition to the biogenetical and stereochemical interest of *S. nudum* steroids, new natural sources and synthesis⁹ of cholest-4-en-3-one are far-reaching, since this structural feature constitute the A-ring of major steroidal hormones, such as testosterone, progesterone and aldosterone, as well as of corticosteroids such as cortisone and algestone.

Tumacoside A (3) and tumaquenone (5) displayed antimalarial activity in vitro against Plasmodium falciparum, a chloroquine-resistant FCB-1 strain, with IC₅₀ 27 and 16 μ M (17.02 and 9.54 μ g/mL), respectively. Tumacone A (1) and B (2) were inactive (IC₅₀ 614 and >1000 μ g/mL).

EXPERIMENTAL

General Methods. NMR spectra were measured at 300 MHz for ¹H and 75 MHz for ¹³C on a Bruker AC300 spectrometer. HRFABMS were obtained on a ZAB-HF mass spectrometer; optical rotations on a Perkin-Elmer 141 polarimeter; FT-IR spectra on a Nicolet Impact 400D spectrometer.

Extraction and isolation. S. nudum was collected in Tumaco (Colombia) and a voucher specimen deposited in the Herbarium of the University of Antioquia (HUA 61181). The grounded air-dried aerial parts (1.2 kg) were extracted exhaustively by percolation at room temp. with petroleum ether, then with MeOH. The MeOH extracts, concentrated in vacuo, were partitioned between H₂O and AcOEt, to furnish an AcOEt extract (90 g). 30 g of AcOEt extract was subjected to cc over Si gel eluting with a gradient of CH₂Cl₂/AcOEt to yield seven fractions. The residue of fr. 2, active against P. falciparum FCB-1 strain (30 % of growth inhibition at 100 μg/mL), was further fractionated repeatedly on Si gel cc eluting with a CH₂Cl₂/ MeOH gradient, to afford compounds: 1 (214 mg), 2 (240 mg), 3 (20 mg), 4 (20 mg), 5 (15 mg) and 6 (1.16 g).

Acetylation. Compound 1 or 2 (5 mg) was kept overnight at 20 °C with Ac_2O (1 mL) and pyridine (1 mL). The excess Ac_2O was decomposed by addition of H_2O and the acetylated compound was extracted with CH_2Cl_2 and purified on TLC.

Enzymatic hydrolysis. Steroid 3, 4 or 5 (2 mg) was incubated at 37 °C, 24h, with β -D-glucosidase (1 mg) in acetic buffer, pH 5, 10 mM (1 mL). The reaction mixture was extracted by CH₂Cl₂ to obtain compound 1, 2 or 6 respectively (TLC, ¹H NMR). The aq. phase was analyzed by co-TLC with D-glucose on Si gel (CH₂Cl₂: MeOH= 75/25).

Tumacone A (1). $[\alpha]_D$ -34.2° (MeOH, c 1.0). IR (film) v_{max} cm⁻¹: 3434, 2927, 1736, 1677, 1650, 1250; 1032. HRFABMS: m/z 495.3109 [M+Na]⁺, calcd 495.3086 for C₂₉H₄₄O₅Na. EIMS: m/z 472 (M⁺), 455, 413, 358, 329, 298, 269, 115, 97.

Tumacone B (2). $[\alpha]_D$ +10.6° (MeOH, c 1.0). IR (film) v_{max} cm⁻¹: 3440, 2933, 1664, 1617. HRFABMS: m/z 453.2950 [M+Na]⁺, calcd 453.2981 for C₂₇H₄₂O₄Na. EIMS: m/z 430 (M⁺), 413, 397, 343, 316, 287, 115, 97.

Acetyltumacone A (1a = 2a). [α] D -34.7° (MeOH, c 1.0). IR (film) v_{max} cm⁻¹: 2940, 1740, 1677, 1618, 1242, 1038.

Tumacoside A (3). $[\alpha]_D$ -25.3° (MeOH, c 1.0). IR (film) v_{max} cm⁻¹: 3434, 2927, 1740, 1677, 1623, 1249, 1032. HRFABMS: m/z 657.3652 [M+Na]⁺, calcd 657.3615 for C₃₅H₅₄O₁₀Na.

Tumacoside B (4). $[\alpha]_D$ -9° (MeOH, c 1.0). HRFABMS: m/z 615.3467 $[M+Na]^+$, calcd 615.3509 for $C_{33}H_{52}O_9Na$.

Tumaquenone (5). $[\alpha]_D$ +2.7° (MeOH, c 1.0). IR (film) ν_{max} cm⁻¹: 3420, 2927, 1682 1213. HRFABMS: m/z 615.3528 [M+Na]⁺, calcd 615.3509 for C₃₃H₅₂O₉Na.

Diosgenone (6). $[\alpha]_D$ -8.8° (CHCl₃, c 1.0).

In vitro antimalarial activity. ¹⁰ P. falciparum, the chloroquine-resistant FCB-1 strain, was maintained on human type O⁺ erythrocytes in RPMI 1640 culture medium system. ¹¹ The diluted erythrocyte suspensions (0.8 % parasitemia and 5 % hematocrit) were incubated 24 h, 37° C in 5 % O₂, 5 % CO₂ and 90 % N₂ with test compound, co-precipitated with polyvinylpyrrolidone (1/4), in 96 well microculture plate. Growth inhibition was determined by the method previously described. ¹²

ACKNOWLEDGMENTS

Thanks are due to Dr J.P. Brouard (MNHN) for EIMS and Centre d'Analyse du CNRS (Lyon) for HRFABMS. We are grateful to the University of Antioquia (Colombia) for financial support of this project.

REFERENCES

- 1. Usubillaga, A. Phytochemistry 1988, 27, 3031-3032.
- Marker, R.E.; Tsukamoto, T.; Turner, D.L. J. Am. Chem. Soc. 1940, 62, 2525-2532.
 Morales-Mendez, A.; Riera, C.; Moreno, L. Rev. Fac. Farm. Univ. Los Andes 1974, 15, 133-145; Chem. Abst. 1975, 83, 55670n.
- 3. Agrawal, P.K.; Bunsawansong, P.; Morris, G.A. Phytochemistry 1998, 47, 255-257.
- 4. Achenbach, H.; Hübner, H.; Reiter, M. Phytochemistry 1996, 41, 907-917.
- 5. Gonzalez, A.G.; Francisco, C.G.; Freire, R.; Hernandez, R.; Salazar, J.A.; Suarez, E., *Tetrahedron Lett.* 1976, 1325-1328.
- 6. Ohmura, E.; Nakamura, T.; Tian, R.H.; Yahara, S.; Yoshimitsu, H.; Nohara, T. Tetrahedron Lett. 1995, 36, 8443-8444.
- 7. Achenbach, H.; Waibel, R.; Hefter-Bübl, U.; Constenla, M. A. J. Nat. Prod., 1993, 56, 1506-1519.
- 8. Allinger, N.L. J. Am. Chem. Soc. 1977, 99, 8129-8134; Lii, J.H.; Allinger, N.L. J. Am. Chem. Soc. 1989, 111, 8566-8575.
- 9. Almeida, M.L.S.; Kocovsky, P.; Bäckvall, J.-E. J. Org. Chem. 1996, 61, 6587-6590.
- 10. Frappier, F.; Jossang, A.; Soudon, J.; Calvo, F.; Rasoanaivo, P.; Ratsimamanga-Urverg, S.; Saez, J.; Schrevel, J.; Grellier, P. Antimicrob. Agents Chemother. 1996, 40, 1476-1481.
- 11. Trager, W.; Jensen, J.B. Science 1976, 163, 673-675.